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We consider one-dimensional transient wave processes which under zero initial 
conditions are excited by a bouhdary force and are described by a quasi-linear 

wave equation of general form. Conditions are imposed on the boundary force 
such that at the initial stage of the process a domain of continuous first deriva- 

tives exists. For the successive approximation of the solution of the quasi-linear 
equation in this domain we propose a procedure in which the solution of a linear 

homogeneous wave equation serves as the zeroth approximation, while the SUC- 

ceeding approximations are computed by integrating the inhomogeneous wave 
equations obtained from the original quasi-linear equation by approximating the 
nonlinear terms by means of the preceding approximation. We consider the ap- 
plication of this procedure for constructing the asymptotic approximations and 

we analyze the deviation of the nonlinear solution from the linear solution (the 
zeroth approximation) as a function of the coefficients of the quasi-linear equa- 

tion and of the nature of the boundary force. As an illustration we examine geo- 

metrically and physically the transient wave processes of deformation of an elas- 
tic halfspace. We show that in the special case of an abruptly applied force, 

which subsequently varies sinusoidally with time, the nonlinear effects lead not 
only to a variation in the amplitude of the linear solution, but also to the appear- 
ance of qualitiatively different high-frequency components of the solution. The 

approximation procedure which in the present paper has been proposed, by ex- 

ample of a second-order quasi-linear equation, for the construction of a solution 
of the travelling wave type, is related in concept, to a certain extent, to the me- 

thod of perturbations [ 11. We remark that the procedure of successive approxi- 
mation was applied in @] for constructing the solution of a second-order quasi- 
linear equation in the form of an expansion in standing waves. To some extent, 
closely related to the present paper are the investigations in [3 - 51 in which 
the dynamic process, modelled by a quasi-linear system of equations, is described 
approximately as the sum of two components of which one is determined as the 
solution of the linear wave equation, while the other is constructed in a non- 
wave form by the method of perturbations. 

1. Strtrment of the problem. Let E be a dimensionless coordinate, ‘T 
dimensionless time, u (E, r) the unknown function, E a small positive number and 
H (r) the Heaviside function. Let a prime denote the derivative with respect to E, 

while a dot - the derivative with respect to 7. In the region E>O,T>O we 
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consider the integration of the quasi-linear equation 

@” (El t)p (u., u’, u; E., t) - u” (E, z)q (u’, U’, 24; E, T) = 
= R (u’, rJ7 u; E, r) (1 .I) 

with coefficients 

Here ai, agj, . . erbi, bgj,.,., ~ij, Cijh , . . . are ~ntinuo~ funetions of 5 and r, 
which acquire finite values. Here the number of indices 0 shows the power of n(Et t), 

the number of indices 1 shows the power of u’ (5, $I , and the number of indices 2 
shows the power of U’ (5, T) in the term standing after the coefficient. 

We give the initial conditions 

u (;5, 01 = 0, 24’ (E, 0) = 0 (1.6) 

one of the following boundary conditions : 

U’ (0, 2) = EY (T) Ef (~1, (Problem A) (1.7 

U’ (0, z) = - E Y (T) N (t) (Problem 8) (1 a 

and the condition of damping at infinity 

u(co,z) = 0 (1.9) 

If the function u (0, T) were given for $ =‘I 0 , then by adjffereut~at~on of u (0, T) 

with respect to T the problem can be reduced to case (1.8). We require that the speci- 
fied function Y (z> have, for z 2 0 , finite cont~nuo~ derivatives of all the orders 
encountered in the subsequent discussions and that it satisfies the conditions 

Y (0) = 0, max 1 Y (t) 1 < 1 for t 3 0 (1.10) 

We are easily convinced that in the problem statement adopted, as a function of the 

coefficients of representations (1.3) - (1.5) and of the properties of function Y (t) , 
either for any g > 0 and a > 0, or in some .&rite time interval 0 f z < xl=eonst, 
0 & Fj < Z, the conditions 

p (u’, a’, u: 5,tI > 0, tl (u’, U’, a; E, t) > 0 (1.11) 

are fulfilled and Eq. (1. I), being hyperbolic, has a ttavelling wave type solution, Here 
either for any E 2 0 and ‘G > 0 or at some initial stage 0 ,( T < t0 = const 
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of the wave process, u’ (5, z), u’ (E, r) and u (E, r) are continuous functions. We 
note that U’ (E, r) and U' (5, T) become discontinuous at a finite value of time z= r0 

when the coefficients of representations (1.3) - (1.5) and the function y (a) are such 
that a shock wave occurs at z = to [6 - $5 

A number of nonlinear problems of mechanics and accoustics lead to the inte~ation 

of special forms of Eq. (I. 1) with coefficients of (1.2) - (1.5) type. For example, the 
nonlinear posing of the problems of one-dimensional transient wave processes of the 
deformation of an elastic half-space [6 - 91 and of elastic rods [lo, IX] leads to the 
special case P = 0, R = 0 and Q = Q (u’) with constant coefficients b,, bij, , , . 
This special case is analyzed in Sects. 5 and 6. 

2. The ruc~etrfve rpproximrtioa procsdurs, Let us consider the suc- 
cessive approximation of a wave solution of Eq, (1.1) for small values of ‘t in the do- 

main of continuous u’ (E, r), u’ (E, zl) and u (g, r) , using a procedure in which the 
zeroth approximation (j = 0) is determined by integrating the linear homogeneous 
equation 

(2.1) 
while the succeeding approximations (j = 1,2, . . _ ) are determined by integrating 
the linear inhomogeneous equations 

uj” (L r) - uj”(j, Z) = Gj($, t) (~=1.2,...) (2.2) 
where 

Gj(& z) = - u;_~ (E, r) P(&, u;_,, u~_~; :, t) + 

ul-1 (E, ~1 Q (&, ~j-1, Uj_1; & IT) C R(u;_~, Z&I, lb~-r; “,, T) (2.3) 

The zeroth approximation of the solution of Problem A, i. e. the solution of the lin - 
ear wave equation (2.1) under the boundary conditions (1.6), (1.7), (1.9), and the zeroth 
approximation of the solution of Problem B , i. e. the solution of the linear wave equa- 

tion (2.1) under the boundary conditions (I. 6), (1. S), (1.9)+ are the same and can be 
represented in the following form : 

5 

u,(E, z)= -u& t)dt= -EY1(Z-~)H(t--~) I (2.4) 

uo’ (5, z) L- - 240’ (E, .t) = EY (z - E) H (z’ - E) (2.5) 

uo” (E, 7) = ug” (E, z) = - eY (T - E) H (z - E) (2.6) 

Here and further t--E 

Y,(r----_)= 1 Y(z)& (2.7) 
0 

We can convince ourselves that in the domain of continuous U’ (g, r), u’ (E, r) and 
u (5, r) , when computing the succeeding approximations j = 1,2,3, . . . the right- 
hand sides of Eqs. (2.2) have the structure 

G, (E, @ = gj @ii, -4 H fz - E) (2.8) 
where gj (j, r) are continuous functions when t -> E. 

Thus, the computation of approximations j = 1, 2, 3, . . . reduces to the inte- 
gration of the inhomogeneous linear wave equations 
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Uj” (& T) - Uj” (E, z> = &j (E, z) H (z - E;) (2.9) 

Using the Laplace transform and applying the method used in [22], we can show that 
the exact solution of Eq, (2.9) in the case of Problems A and B can be represenred as 

Uj” (L T, = Uj” (E, 2) + gj (67 z) H (r - E) (2.12) 

Here T = 1 in the case of Problem A and ?’ = - 1 in the case of Problem B , 
In (2.11) and (2.12) we have used notation (2.13) and (2.14). respectively 

For concretely specified function ‘#! (z) and coefficients ai, aij, . . . , bi, bij, . . , 

Cjj, Cfjh, . . . by an analytic or numerical computation of the integrals occurring in 
formulas (2.13) and (2.14) we can find the several first appro~mations (j = 1, 2, . . .) 
of the wave solution of the quasi-linear equation (1.1) under the boundary conditions 

of Problems A and R . From these approximations we can establish how the solution 
of Eq. (1.1) differs from the solution of linear equation (2.1) with increasing time. The 
approximation precedure formulated can be applied also in the case of functions 

P (u’, u’, u; Tj, I$, Q (u’, u’, u; c, t) and R (u’, u’, U; E, T) which differ 
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from (1.3) - (1.5) but which for sufficiently small values of ‘G satisfy the conditions 

3, Rerftrrtioa of the procedure in the form of an rsymptotic 
rpprOx.imation. The approximation procedure described can be used to construct 
asymptotic approximations as E -_t () . To do this we should compute g, (g, z) to 
within terms with the factor e2, gs (E, a) to within terms with the factors a2, a3,etc. 
For such accuracy of computation the functions gl (g, r) have the structure 

gj (E,z) = E f: Eigi* (E, T) @*I) 
i=l 

where g,* (E, z) does not depend upon E. The asymptotic ap~oximatio~ of the un- 
~IIOWR functions Uj (g, 7) and of their derivatives are subject to computation by the 

general formulas (2.10) - (2.14). For such a realization of the procedure the j th appro- 
ximation has the structure i 

Uj ([, Z) = EH (Z - E) 2 EiUi (ET r, (3.2) 

where ui (g, r) does not depend upon 8. 

i=o 

In view of the fact that fiction (1.3) - (1.5) are ~lynomia~ in tl* (E, z), U’ (E, ‘c) 
and u (E, z), the realization of the proposed approximate procedure as asymptotic appro- 

ximations, as E - 0, yields a solution in the form of sum (3.2) which in structure is ana- 

logous to the original assumption used when applying the method of perturbations Cl]. 
However, as far as the author is aware, the transient wave processes considered in the 
present paper have not been investigated by the method of perturbations. We remark 
that to within representation (3.1) function gr (E, z) and, correspondingly, also the first 

asymptotic approximation UI (E, z) are defined by the function Y (T) and by the coef- 
ficients ai, bi, Gil (i, i = 0, 1, 2) of representations (1.3) - (1.5). The second asymptotic 
approximation u, 15, Z) depends on Y (r) and on the coefficients ai, aif, bi, bij, cfj, 

Cijh (i, j, h = 0, 1,Z) of representations (1.3) -(I. 5). The coefficients of representations 

(1.3) - (1.5), on which the succeeding asymptotic approximations depend can be indi- 
cated by analogy. 

Let us consider further the case of constant coefficients of representations (1.3)-(1.5) 
and for this case give explicit formulas for the first two asymptotic approximations. 
From what is set forth below we see that in the case mentioned the functions ui (Et t) 
in (3.2) have the structure i 

k=O 

and in the jth approximation the asymptotic solutions of Problems A and B for E -to, 
can be written in the form 

i=1 k=o 

j i 
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7ij’ (E, T) -= u()’ (z - EJ + H (z - g) E i: &i i E’cTj&k (z - EJ 
i=1 k=o 

llj”(E, z)=uo”(z-E)+H(z-- g)E i Ei $jk~Q&--) (3.4) 
+=1 k=o 

ZAj” (E, Z) z Ug” (Z - EJ + H (t - E) 5 i Ei i El”qrrik (T - EJ 

i=l k=o 

Here qik, qeik, qTikt qEEik and t+rik are functions which depend On 5 and a in 
terms of the difference r - E. However, the forms of these functions for Problems A 
and B are different and are determined by the function y (T) and by the coefficients 

of representations (I.. 3) - (1.5). 
The first asymptotic approximation in the case of constant 

coefficients of representations (1. 3) - (1. 5). Having carried out the 

calculations for j = 1 on the basis of formulas (1.3) - (1.5) and (2.3) - (2.8). we 
have the asymptotic approximation 

g1 (E, r) = iho (t - 0, g,, (7 - E) = E?Wl (T - E) (3.5) 

WI cT - g) =(A, - A,) Y- (7 - E) Y (T - E) - AoY’ (z - E)~I (7 - 8 + 
CzY2 (T - fJ + C,Y (T - g)yl (T - $1 + co Y12 (z - El (3.6) 

A2 = a~ - b2, A, = a, - 4, Ao = a, - bo 

c, = c22 - CZl + Cll, c, = c20 - Cl09 co = coo (3.7) 

and we have used definition (2.7). Due to the fact that in the case being considerd 

g, (E, r> = g10 (T - 5) and g10 (0) = 0, h g t e eneral formulas (2.11) and (2.12) 
simplify into formulas (3.8) and (3.9). respectively, 

Ult’ (Et q = (-- EY’ b - E) + ‘I, (T - 3) &o IT - E) + 

%Eg10’(-c-~~pw--EJ (3.9) 

Ul” (E, T) = Ul" (E, 4 + g10 CT - E) H (T - E) 

Substituting (3.5). (3.6) into (3.8) and (3.9), we obtain formulas of form (3.4), where 
in the given case j = 1 and in the right-hand sides the first terms ace the linear 

solution (2.4) - (2.6), while the second terms are defined in therms of the functions 
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s--E 

qlo(z--g) =f(l +q 5 dz~w,(1)dl, 7-E 

q11 (r - E) = + ’ 
s 

Wl &I dz 
0 0 0 

rlao (r - E) = +(I - T)‘SE q(z)dz, TlEll (z - E) = - :+ Wl CT - E) 
0 

7-E 

7710 6 - E) = $ (1 + T) 1 w(z) dzv r),ll(T - E) = +wl(z -8 

0 

rlEEl0 (r - E) = l/4 (T - 3) Wl (r - 89 rlE411 (r - E) = l/2 Wl' (z - E) 

qtrlO(T - E) = V.i(T + 1) Wl(T -E), rssn(t -8 = '/2w'(t - E) (3.W 

TINS, if function Y (IT) and the numerical values of coefficients ai, bi, C~J (i, j = 0, 
1, 2)are given, then the problem of computing the first asymptotic approximation con- 

sists in a successive application of formulas (3.4), (2.4) - (2.6) and (3.10). 
The second asymptotic approximation with COnStant COeffiCi- 

ents of representation (1.3) - (1.5). Substituting the first asymptotic 
approximation into (1.3) - (1.5) and using (2.3) and (2.8), we have the asymptotic 

approximation 
gs (E, 7) = g2, (z - E) + k21 (7 - El 

(3.11) 

Here 

g,, (T - E) = E2 Wl (r - E) + 8% w2 (T - E), 

(3.12) 
g21 (T - E) = e"fi (t - E) 

In (3.11) the function w1 (T - E) is defined by formula (3.6) while the functions 
w2 (a - E) and f2 (T - E) have the following values : 

7-E 7-E 

w&-g)==Y*(Z-Q{Rz s w,(z)dz+Bo 5 &4(l)dl+ 

A12Y2(T - Q+ A,,Y(z - E)& -E) + 40'rla;~ A) 1 + w1 @ - 

E){BlY(r -E) + (Bo + b,) Yl(z -EN -[C2*W - 

7-E 

E) +&*YP, (z - g)] s wl(z) dz - $1 + T,[+ C,Yh - E) + c2y1(r- 

0 
r-4 2 

E)] i dz \ w1 (I) dl-C1,Y3 (z--&&Y2 (~-8Y,(I+8-C,,‘+” (r--E) X 
0 0 

'r12(z - E) - C10~13(~ - E) (3.13) 
z-4 

f2(t-++Y*(t-E){(A2--l)wl(I-E)+ A0 1 "1(W)-l- 

+wl'(~ - E) {(A2 - A,)Y(t - 8 + AoWO- E)) - 

w,(Z.-~){C2Y(T-5)+~c1Y~~-5~)-[~C,Y~~-~E)+ 

7-e 

coy1 (r - E,] j wl(4 dz 
0 
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In& 13). in addition to (3.7) we have used further the following short notation for the 
constants : 

A la = 42 - bw - a21 + b2l t an - bu 

All = aao - b,, - alo + ho, AIO = uoo - ho 
B, = l/4 (1 + T) A, + ‘14 (1 - T) AI 

B, = V4 (1 + T) (4 - Al) + b, - bl, Bo = l/b (1 + T) A, 

c,, = c222 - C221 + c211 - Cl117 Cl2 = C220 - c210 + Cl10 

Cl1 = c200 - Cl009 Cl, = COOI c,* = l/a (1 + T)czo + l/s (1 - T)ClO 

c2* = l/2 (I + T)c,, - l/* Tc21 + '/2 (T - 1)Cll 

In the special case being considered of a function g2 (g, T) of form (3. ll), possessing 

the property g,, (0) = 0, f2 (0) = 0, h g t e eneral formulas (2.11) can be reduced to 
the form 7-E 

u2’ ([, T) = EY (r - a) H (r - E) + $ (1 - T) H (r - E) { s g20 (2) dz + 

0 
T-F, z s-E 

+ 5 d2~~,,(2)d~--~~H(~-~){~,,(~-~) -+ 5 

0 0 

o g,,(z) dz } - 

$g2g21(r -E) H (r - E) 

T-E 

u,'(E, q = - SY(T - E)H(z - k) +$(I + T)H(T - E) ( s fr?2o(z)dz + 

0 

Analogously we can modify formulas (2.12). By substitution (3.12) we further easily 
represent the solution in the form (3.4) where in the given case i = 2 and in the right- 
hand side there occur the functions (3.10) as well as the following functions : 

Z-E 

t12k (T - k) = s q+zh. (z) d.7, (k = 0, 1, 2) 
0 

qbLo (z - 5) = + (1 - 7’) { Tr w2 (z) dz -+ &f dzi f2 (1) dl } 
0 0 L! 



Deviation of the solution of a quasi-linear wave equation 423 

774420 @ - E) = +- (T - 3) w2 (z - E) + f (1 + T) s fz (4 dz 

IlEE21 (7 - E> = li2w2’ CT - E) - 3/4f2 (.t - E), rlEE22 (r - s,O= ‘l4f2’ (r - E) 

“TT20(T-E)=~(l+T)w2(~-~)+$(1+T)~~~2(z)dz 

qm1 (T - E) = ‘/ 2w2’ (7 - 6,) + ‘l4f2 (r - E), Qr22 (z - E,“= l/‘sfz’ (r - E) 

The second asymptotic approximation, as the first one, exactly satisfies the boundary 

conditions (1.6), (1.7), (1.9) of Problem A with T = 1 and the boundary conditions 

(1.6). (1.8). (1.9) of Problem B with T = - 1. As r increases the perturbed domain 
0 6 E < z grows. The stated formulas show how the solution of the quasi-linear equa- 

tion (1.1) differs from the solution of linear equation (2.1) in the domain of continuous 

u’ (E, T), u’ (E, r) and u (E, 2). 

4. Devfrtion of the nonlinear solution from the linear &t the 

very Btart of the wave prooetr and In the near-front region. Or! 
the basis of the assumptions adopted in Sect. 1, the function Y (T) admits of the repre- 

sentation 
y (‘d) = +3!’ (0) + V2T2Y’” (0) + vs T3Y’“’ (0) + . . , (4.1) 

as z--t 0 ,here Yy’ (0), Y’. (0), . . . are finite numbers. Let us again consider the 

case of constant coefficients of representations (1.3) - (1.5). Using (4.1) with small T, 
we compute the derivatives and the integrals of Y (T - E) occurring in the formulas 

in Sect. 3 and construct the jth asymptotic approximation in the form 

Uj (E, 2) = - {l/2 (z - W&Y’ (0) [I + fij1 (E,T)I + 

l/s (2 - E)” EY” (0) 11 + *j2 (E7 z)l + - - - }H (7 - E) (4.2) 

In the case of the zeroth approximation j = 0 

6 0 Ok = (k = 1,2,3,...) (4.3) 

and representation (4.2) turns into the expansion of linear solution (2.4), while to within 

the succeeding asymptotic approximations i = 1,2,3, . . . 

i=l I=0 

Here M;;i, (Z - E) are polynomials of (r - EJ-l, (T - E)‘, (T - E)‘+l, . - -9 
which as (7 - E) + 0 tend to the finite limits 

,T_,timo”f kil tT - E) = Nlcil, 
const 

iV,il = 
for k = 1 

0 for k > 2 (4.5) 

The numerical values of the coefficients of polynomials M,i, (T - E), including 
also the values of Nli,, are determined by the values of the coefficients of represent- 

ations (1.3) - (1.5) and of the quantities 

6 y (r) Lo, n=k, n=k+l, n=k+2,... 
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Note that 
(4.6) 

N 110 = - ‘/IZ (1 + T) (A, - A,)Y’ (0), N,,, = - Vz (A, - A,)Y (0) 

As ‘C -t- 0, i.e. at the very commencement of the wave process the quantities 

6,, (E, r! tend to zero in the perturbed domain 0 %< t < z and for any j and k . 
Consequently, in the case of the problems under consideration, for sufficiently small 
values of time T the solution of the quasi-linear wave equation (1.1) is arbitrarily close 

to the solution of the linear wave equation (2.1). 
Let us now consider the deviation of the solution of Eq. (1.1) from the solution of Eq. 

(2.1) in the near-front region where the difference z - E is a small quantity. On the 

basis of (4.2) - (4.5), as (r - E) -+ 0 we have 

uj (L r) - - r/2 (z - E) 2EY’ (O)H + 8, (E) + 0 (r - E)l f.f (z - E) (4.7) 

Here 
6,(E) = 0 and tij = i &i&iNlii for j=i,2,3,... (4.3 

i=l 

In the near-front region 5 increases with a growth of ‘G. Consequently, for sufficiently 
large r the quantities S,(g) can acquire arbitrarily large values. Hence, for sufficiently 
large values of time the error in the zeroth (linear) approximation can become arbitra- 
rily large in the near-front region, 

On the basis of (3.7) and (4.6) we have 

N 111 = v2 (a2 - a1 - 42 + WV) 

Let us assume that NIII does not equal zero and that 1 Nlii ) < (1 N,,, I)i. Then for 
sufficiently small z for which the condition 

l/z 1 (a2 - a~ - b, + h) ‘% y’ (0) i < 1 

is fulfilled in the perturbed domain, the zeroth (linear) approximation has an asymptotic 
error of order 

61 - t/a EE (aa - a, - 6, f b,) y* (0) (4.9) 

in the near-front region. From the coefficients of representations (1.3) - (1.5) only ~1, 
bt, aa and b, occur in estimate (4.9). Consequently, in the case being considered the 

solution of Eq. (1.1) with coefficients (1.2) - (1.5) can be approximated in the near- 
front region using the solution of the equation 

5, Deviation of the nonlinear solution from the linear one 
under one- dimcn8ionrl transient wave procesacr of deformation 
of rn elr8tlc hrlfacprce. bet us consider the application of the method set 
forth above to the case of transient wave processes of deformation of an elastic half- 
space, which in a Cartesian system of Lagrange coordinates depend on the one coordinate 
X and on time t. Let I;t’ be the deformation energy density, referred to a unit volume 
in the undeformed state, p. the density in the undeformed state, I!/ (x, t) the displa- 

cement, k and p Lame constants, h a constant with the dimension of length. We 
adopt the notation 

c = [(h + 2p) / p oll’z 
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and we introduce dimensionless quantities by the formulas 

E = XP, z = ct/@, u = Uh-t (5.1) 
Then geometrically and physically the nonlinear one-dimensional transient wave pro- 
cess of deformation of an elastic half-space can be described by the equation [6 - 91 

28” (E, z) - U” (E, a) 4 (u’) = 0 
where 

(5.2) 

Q (u’) = $$$(A + 2p)-l, e = 16’ + + (U’)a (5.3) 

Usually the function J$’ (e) is constructed in the form of an expansion [6 - 91 where 
Q (a’) has the structure 

4 (u’) = 1 + Jr&u’ (5, @ + k, [u’ (E, T)l2 _t . . . (5.4) 
We remark that the value of coefficient k, is determined by the constants of the five- 
constant theory of elasticity, while even for the computation of k, we need more exact 
information on the physical properties of the meterial. 

Equation (5.2) with coefficients (5.4) is a special case of Eq. (1.1) with coefficients 

(1.2) - (1.5). Using in this special case the formulas for the second asymptotic appro- 
ximation, constructed in Sect. 3, we have 

i-t r-E 

Z&f (& z) = { - 8 5 Y (2) dz - E2 [+ (1 + T) k, i; Y2 (z) dz + 

+ k,[YZ (:- E)] + 9 [&(I + T) ($ (5 ” 37’) k12 - 

+-E 

kz) i y3(z)d~ +$($(5-33T)k,2-kk,)~Y3(~-~)- 
0 

-i& k,‘%’ -g yf3 (f - Ei] + E4 (0)) If @ - E) 

u2’ (E, z) = (,Y (z - 5) + e2 I- $ (1 - T) k,‘P (z - 5) + 

+k,~+$l”2(t-~)] +s3[&(i -T)iQ(5-3T)k+ 
> 

k,)Y’S(r-5)+(~(~-3)k,“-t$k,)~~Y3(~-tl)+ 

& k,‘!i2 & ‘-8~’ (z - Ql+ 8’ (O)} H (z - E) 

u2’ (E, z) = 
{ 

- CY? (z - E) - EZ 
I + (1 + T) k,y2 (7 - E) + 

+k,$$P2(z - E)]+~2[~(~+T)j$(5-37’)k,2- 

k,jF(~-Q+$($(5-33T)k12-kl)&P3(~-~)- 

+ kly‘2 ~~s(T-_)]-j_FP(O)}H(?-5) 
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u; (6, t) = {- &Y’ (7 - 5) + E2 [$- (3 - T) k, $ Y2 (t - g - 

$k,&‘1-‘“@4)- [ I e2 -&3-T) 
1 
-+3T)k,2- 

k?)+~(1LT)k,~]~Y”(r-~)+eaS~~~$(7--3T)k,Z- 

k, 4 
) 

$ kIz] $ Y3 (z - g) - s3E2 [f k12 g Y3 (z - g)] + 

E4 (0) 
I 

IJ (.c - 8 

@2 “(& z) = { - &3?’ (r - g) - ? [+- (1 + 2’) k, -& Y2 (z - E) + 

-+- $,k, & Y2 (z - E,] + 63 [&(I + T) ($(5-3T) k12-k2) $ Y3 (x - Q] + 

&q -f 
[ i 

$ (5 - 3T) k,” - kB: & Y 3 (z - E)] - 

E3E;2 [$ h2 & y3 (z’ - 31 + E4 (0)) H (a - 8 (5.5) 

Here, as before, T = 1 for Problem A and T = - 1 for Problem B , Within the 

braces in formulas (5.5) the terms with factor 8 correspond to the zeroth approximation 
(the linear solution), while the terms with factors es and es are, respectively, the correc- 

tions found as a result of computing the first and second asymptotic approximations. 

Here the terms with factor ea depend on the material’s physical constants expressed in 

kl, while terms with factor es are expressed in kl and k,. To compute k, we need the 
constants of the five-constant theory of elasticity, while to compute k, we need the 

constants of a more exact model of the material. 

If the conditions 
El&l<% Ik,l,(k (5.6) 

are fulfilled, then formulas (5.5) for computing the derivatives can be simplified, with 

a~ asymptotic error of order ekl, to the following formulas : 

4’ (E, rt) = -ZL2’(&Z)= E‘y(t--g)+ 
i 

+ k& 4 ‘P (z - g) + 

-& k,%3E2g2 Y3 (z - E) + s4 (0)) H (z. - E) 

UC (& t) = Uz” (E, Z) = 
i 

- E\T’ (Z - $) -$k,j$P’2(t-~}- (5.7) 

&- k,2&3~2 & Y3 (z - E) -+ & (0)) H (z - E) 

The solutions of Problems A and /j’ are identical to within formulas (5.7). 

6, &xrmple. Suppose that on the surface X = 0 of an elastic half-space there 
is applied either the force 

or the force 

au (X, r)/& = - EC sin Qt N (tf for X - 0 (6.1) 

au (x, t)/ax = E sin Qt H (t) for x=0 (6.2) 

If we introduce the dimensionless quantities (5.1). then in case (6.1) we have Problem 
B , while in case (6.2) we have Problem A relative to Eq. (5.2). Here 
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Y.(z) = sin (z ~Qc-~) 

Let us assume that the specified values of the coefficients kl, k, and E are such that 

conditions (5.6) are fulfilled, and let us use the simplified formulas (5.7) of second 
approximation which with an error of order ekl are the same for Problems A and B 0 We 

then have 

m(x, 4 I aua(x, t) 
= sin [Q (t - Xc-‘)] + 4 

a 
ax =-C at klec_lX at sina [Q (t - XC-~)] + 

& klW+Xa gsi.13 [B (t - Xc-l)] eH(t - Xc-‘) 

Formula (6.3) can be easily led to the form 

NJ2 (X, t) 1 aUa(x, t) 
a_,y =-C at = 

I( 
1 - -& klaeaxww sin [ 52 (t - Xc-l)] i 

) 

t kleXCW1 sin [252 (1 - Xc-i)] + 

& kpsxaiwa sin [3Q (t - Xc-l)] 1 eH (t - Xc-l) 

To within a linear (zeroth) approximation we have the solution 

au, (X, t) 1 avn(x, t) 
ax =-e at 

= sin [Q (t - XC-]-)] EH (1- XC-‘) 

(6.4) 

(6.5) 

From a comparison of (6.4) and (6.5) if follows that the nonlinear effects increase 

with the growth of kleXQc_1 and in the case being considered, occur in two forms : 
a) in the form of a variation in the amplitude of the linear solution, b) in the form of 

the appearance of higher frequency components of the wave process, which were absent 
in the linear solution. For sufficiently small t the nonlinear solutions differ arbitrarily 
little from the linear one, but as time t increases the perturbed region 0 < X < tc 
grows and the nonlinear effects become apparent more strongly in that part of the per- 
turbed region where X acquires comparatively large values. For the specified values of 
kl, e, 52 and c the approximation method used is suitable in that part of the perturbed 

region where kle XfWl is less than or of the order of unity. 
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The behavior of active muscular tissue is described with the help of a closed 

system of equations of motion of a two-phase,multicomponent. anisotropic con- 
tinuous medium, with the mechanochemical processes occurring within it taken 

into account. The fundamental hypotheses are based on the information of gene- 
ral character concerning the structure and performance of the muscular tissue. 

It is assumed that the phase in which the mechanochemical reactions take place 
is viscoelastic, while the other phase is assumed elastic. The medium is assumed 
to have single velocity, although a passage of components between the phases is 

allowed. The laws of conservation are given and the rheological equations are 
written in accordance with the general principles of the mechanics of continu- 
ous medium and thermodynamics of irreversible processes [ 1 - 41. It is shown 
that the model constructed describes, e. g., such characteristic properties of the 

muscle tissue as the existence of stresses in the absence of strains, zero-load de- 
formations, and dissipation of energy in the state of mechanical equilibrium. 

The activity of the muscular tissue is governed by chemical processes taking 
place in the tissue, within the specific ordered structures called myofibrillae 
and, in the final count, by the mechanochemical reactions which affect the form 
or the relative distribution of the protein molecules [5 - 81. Outside the myo- 
fibrillae we have various auxilliary systems, the connecting tissue and other 
structures, including capillary blood vessels which serve as the source of initial 
chemical compounds. The onset of active muscular contraction is connected 
with the arrival of specific reagents at the myofibrillae. 

The study of various physiological phenomena (such as the working of the 


